
© Vespa.ai Norway AI. Nov 2024

We Make AI Work

Scaling Smarter: Vespa's Approach to
High-Performance Data Management

1

↗ All contents contain linked titles.

© Vespa.ai Norway AI. Nov 2024

↗ Introduction 3

↗ Core Concepts in Vespa Architecture 4

↗ Processing Incoming Data in Vespa 5

↗ Data Ingestion: Real-time and Scalable 6

↗ Handling Growing and Changing Data Seamlessly 7

↗ Overcoming Limitations of Traditional Systems 7

↗ Conclusion 8

Document

Scaling Smarter: Vespa's Approach

to High-Performance Data

Management

2025

Vespa.ai Contents

We are a platform for building and running

real-time AI-driven applications for

search, recommendation, personalization,

and RAG. It enables enterprise-wide

AI deployment by efficiently managing

data, inference, and logic, handling large

2

© Vespa.ai Norway AI. Nov 2024

Scaling Smarter: Vespa's Approach to High-Performance Data Management

Version or date here3

Scaling Smarter:
Vespa's Approach to
High-Performance Data
Management

Vespa: Real-Time Data Processing
for Scalable Applications

Vespa is a powerful real-time data processing platform

designed for high-performance search, recommendation,

and other low latency data-driven applications. It

supports real-time data ingestion and querying,

integrates storage and compute functions, and offers

scalability and fault tolerance. Its flexible query and data

model enables advanced data processing and delivery of

high quality results.

By simplifying complex data management tasks, Vespa

allows developers to build scalable applications without

manually handling time-consuming and mundane

technical details. Applications can be updated and

resized without downtime, ensuring continuous

availability and improvement. Vespa processes complex

queries in real-time, keeping data up-to-date even as it

changes rapidly, helping businesses stay competitive

while streamlining application development and

operations.

Introduction
Processing data at any scale with low latency is a

challenging problem that requires an unusual systems

architecture. Traditional systems rely on moving data to a

compute node or cluster when the data is needed, but

this does not work when a lot of data is needed quickly

because the amount of data that can be moved over the

network in time is so limited. While network capacity has

improved over time, processing capacity is increasing

faster, so this problem has become worse over time.

Businesses today have use cases that require low latency

in combination with seamless scaling, zero downtime, and

cost optimization without overburdening engineers. This

ebook explores how Vespa’s advanced architecture

optimizes data storage, processing, and performance at

scale.

© Vespa.ai Norway AI. Nov 2024

Core Concepts of
Vespa’s Architecture

Data Distribution and Processing

Buckets: Logical units of data distribution. Vespa

divides data into buckets, which are dynamically

assigned to nodes for optimal storage and

performance.

Container Clusters: Handle query, result, and write

processing, including any application-specific logic.

They manage incoming requests and coordinate

query execution across the system.

Content Clusters: Store and manage document data

and indexes. Content nodes within these clusters

hold the actual data and execute data retrieval,

ranking, and inference.

Nodes: Servers that store and process data. Nodes

work together within clusters to ensure reliability and

scalability in both data size and parallel processing

capacity.

Data Management and Fault
Tolerance

Consistency Model & Replicas: Ensures data

availability and fault tolerance through multiple

replicas. Vespa supports eventual consistency while

prioritizing high availability and partition tolerance.

Replicas and Redundancy in Data Management:
Ensures high availability and fault tolerance by

maintaining multiple copies of data across different

nodes. If a node fails, Vespa automatically uses a

replica to maintain service continuity and

re-generate replicas.

Scaling Smarter: Vespa's Approach to High-Performance Data Management

Version or date here

Data Modeling and Performance

Document Model: Represents data as structured

documents with key-value pairs. Each document

follows a defined schema, enabling efficient indexing

and retrieval.

Ideal State: A system state where all data is

optimally distributed across nodes, ensuring

maximum availability and performance. Vespa

continuously works toward this state in the face of

changes such as loss of nodes or application

rescaling.

Read/Write Separation: Optimizes performance by

separating indexing (write) and query (read)

operations. This separation allows for concurrent

data updates and fast search capabilities.

System Configuration

Application Package: A deployable configuration

containing services.xml, schemas, ranking profiles,

machine-learned models, components, and all other

settings that together define a Vespa application.

Schemas: Defines document types, fields, and

attributes. It specifies how data is structured,

indexed, and ranked within Vespa.

services.xml: Configures services, clusters, and

nodes in Vespa. It defines the system’s architecture

and capabilities.

4

© Vespa.ai Norway AI. Nov 2024

Scaling Smarter: Vespa's Approach to High-Performance Data Management

Version or date here

Processing Incoming Data

5

Container Cluster

Document processing
/ indexing

Document API

Document

Content Cluster

Distributor

Content Node

Cluster controller

The cluster controller manages

the state of the distributor and

content nodes. This cluster

state is used by the document

processing chains to know

which distributor to send

documents to, as well as by the

distributor to know which

content nodes should have

which bucket.

The distributor calculates
the correct content node
using the distribution
algorithm and the cluster
state.

Content Clusters store and

manage document data and

indexes. Content nodes within

these clusters hold the actual

data and execute data

retrieval, ranking, and

inference.

Container Clusters handle

query, result, and write

processing, including any

application-specific logic. They

manage incoming requests and

coordinate query execution

across the system.

Nodes are servers that work

together within clusters to

ensure reliability and

scalability in both data size

and parallel processing

capacity.

The document model
represents data as structured

documents with key-value

pairs. Each document follows

a defined schema, enabling

efficient indexing and

retrieval.

https://docs.vespa.ai/en/content/content-nodes.html#cluster-controller

© Vespa.ai Norway AI. Nov 2024

Data Ingestion: Real-Time
and Scalable

Vespa enables fast and efficient data ingestion through

async streaming APIs and a unique distributed real-time

indexing design, where recent changes are indexed in

memory and later consolidated on disk. The process

includes parsing incoming data into Vespa's document

model, processing the document according to what is

specified in the application schema, distributing data to

content nodes for fault tolerance and scalability, and

persisting the data and applying the required index

changes on those nodes.

The whole process completes for each document or

document update before acknowledging the operation to

the client, ensuring that all operations are persisted and

observable in real time. Since the process uses streaming

and async responses end-to-end (using HTTP2 to the

client), there is no need for a separate batch API.

Write operations to particular fields are applied without

changing the entire document. This ensures that changes

to in-memory metadata fields can be applied cheaply,

often reaching a rate of over 100k writes per second. This

enables Vespa applications to incorporate fast-changing

signals such as remaining advertisement budget or user

behavior feedback in real time.

Overall, Vespa’s data ingestion process ensures fast,

reliable, and scalable data management. Businesses

benefit from immediate data availability, operational

continuity, and the flexibility to scale effortlessly as their

data and traffic increase.

Vespa’s Approach to Efficient Data
Storage and Management

Vespa distributes data across multiple servers, called

nodes, to ensure reliability and scalability. This setup

provides fault tolerance, meaning that when a node fails,

queries and writes continue to workload and data copies

are automatically distributed over the remaining nodes.

More nodes can be added as data or traffic grows, and

removed when it shrinks, enabling your applications to

track demand without either wasting resources or risking

running out of capacity.

Storing and Processing Data

Content clusters in Vespa store data, maintain indexes

and execute queries, including using machine-learned

models for ranking and inference. When a query is

executed, the content clusters locate relevant data, apply

ranking models, and return organized results in real time.

Organizing Data for Optimal

Distribution

Vespa organizes data into virtual buckets, which are

assigned to nodes using an ideal state algorithm. This is

used to ensure both distributed and consistent

management of data, and balanced distribution of data

copies. As the system scales, whether by adding or

removing/losing nodes, buckets are automatically

rebalanced in the background to maintain optimal

performance. This process happens without disrupting

queries or writes.

Distributors: Managing Data Locations

While nodes store the actual data, distributors manage a

real-time map of where buckets are located. They keep

this map in memory, tracking details like document

counts, storage usage, and metadata. If a distributor

restarts, it consults the nodes to rebuild its map,

removing the need for a central master server.

When data-related actions like adding or updating,

retrieving, or deleting documents occur, Vespa

automatically routes requests to the correct nodes

based on the bucket’s location. This ensures efficient,

balanced data management as the system grows or

changes. All nodes in a content clusters plays dual roles

as both distributors and storage nodes.

Processing Data and Queries

Vespa also uses stateless container clusters to process

incoming data, handle search queries, and run

application-specific logic. Depending on business needs,

developers can run all tasks within a single container

cluster or split them into specialized clusters for data

processing, query execution, and custom logic.

After processing a query or data operation, the container

cluster routes it to the appropriate content nodes that

Version or date here6

Scaling Smarter: Vespa's Approach to High-Performance Data Management

© Vespa.ai Norway AI. Nov 2024

store the relevant data. If external services are required,

Vespa seamlessly integrates additional components to

retrieve and combine the necessary data for a

comprehensive response.

Handling Growing and
Changing Data Seamlessly

As business needs evolve, Vespa simplifies data

management by automating application updates, scaling,

and consistency management. Developers can quickly

deploy new versions of their applications by updating the

application package. Vespa automatically distributes

updates to the right servers, restarts services when

needed, and keeps the system running smoothly without

manual intervention. This makes rolling out new features

and improvements fast, hassle-free, and reliable. They

can deploy changes quickly, iterate frequently, and

maintain optimal performance—all while reducing

operational costs.

Effortless Data Growth Management

Vespa’s architecture is designed to handle growing and

changing data with minimal manual effort:

Automatic Data Redistribution: Vespa uses an

intelligent redistribution algorithm similar to CRUSH,

ensuring minimal data movement when nodes are added

or removed. This minimizes service disruptions while

keeping the system balanced and efficient.

Automated Scaling: Vespa can automatically expand

capacity and rebalance data without downtime as data

volumes or load increase. Engineers no longer need to

spend weeks planning capacity upgrades or service

expansions.

Transparent Scalability: Scaling does not require service

interruptions. Vespa automatically handles node failures,

resource scaling, and adaptive storage expansion behind

the scenes.

Vespa’s Consistency Model

Writes in Vespa are immediately observable in all

subsequent operations, making it fully consistent during

normal operations. In failure situations Vespa will

prioritize availability over consistency when there is a

conflict, ensuring that all requests receive a response

even if some observed data may not be consistent.

Formally, Vespa is an AP (Availability and Partition

tolerance) system under the CAP theorem.

Overcoming Limitations of
Traditional Systems

In systems like Elasticsearch, the number of shards must

be decided at index creation, which doesn't easily change

over time. These shards are then distributed across your

cluster nodes. If the number of shards doesn’t align well

with the number of nodes, you can end up with

hotspots—nodes that are overloaded while others remain

underutilized.

Key Challenges

As your cluster grows and scales, this static sharding

model creates five main challenges, each with significant

trade-offs:

Limited Scaling Flexibility (Scaling by Divisors): You can

only scale effectively by adding nodes in multiples that

evenly divide the total number of shards (including

replicas). This leads to reduced scalability and flexibility

due to rigid shard-to-node ratios.

Oversharding (Excessive Shard Creation): Creating

more shards than needed (e.g., 1,000 shards for 100 units

of data) to simplify scaling, which leads to higher search

overhead and degraded performance. Query

performance suffers as each search must check all

shards, increasing latency.

Imbalanced Distribution (Add Nodes Without
Resharding): When adding nodes to a cluster, if the total

number of shards isn't evenly divisible by the new node

count, you will encounter hotspots. This challenge is

unavoidable in large clusters (50+ nodes), where

managing an excessive number of shards or frequently

changing divisors isn't practical.

Hotspots may require occasional manual intervention,

such as redistributing hot shards when multiple

resource-intensive ones are assigned to the same node.

Version or date here7

Scaling Smarter: Vespa's Approach to High-Performance Data Management

https://www.elastic.co/blog/resizing-elasticsearch-shards-for-fun-and-profit

© Vespa.ai Norway AI. Nov 2024

Shard Splitting and Reindexing (Manual
Restructuring): Splitting large shards or reindexing

requires downtime, extra capacity, and operational

expertise. This complex and costly process also involves

the risk of inconsistent data flow during reindexing.

Growing Transaction Log (TLOG) Issues: In traditional

systems, copying a shard requires storing incoming

updates in a transaction log (TLOG). For large shards, this

process can be slow, causing the TLOG to grow

excessively, which risks delays or failures. As a result,

systems with fixed shard sizes often struggle to handle

shards larger than 50–200GB, depending on hardware

and network speed.

Overcoming the Limitations of Fixed

Sharding with Vespa

Overall, fixed sharding fundamentally restricts your ability

to scale efficiently and reliably. Each approach to address

the imbalance (divisors, oversharding, imbalance

tolerance, or splitting/reindexing) introduces operational

costs, degraded performance, or limited flexibility.

By contrast, you don’t need to worry about managing

shards manually in Vespa. When you add or remove

nodes, Vespa automatically makes the minimal necessary

changes across all nodes to stay well distributed. Since

buckets are just a virtual management unit, Vespa can

ensure it has a great many more buckets than nodes,

which makes it possible to avoid any hotspot issues. This

approach is more reliable because it avoids the common

problem of handling updates during shard copying,

allowing for smoother scaling and more efficient data

distribution.

Vespa eliminates these challenges through a dynamic,

automated, and scalable architecture. Its dynamic data

distribution removes the need for static shard allocation,

while built-in automatic data rebalancing ensures smooth

scaling with minimal downtime. This approach reduces

operational complexity, enabling businesses to scale

effortlessly while maintaining high availability and

performance—even as data and workloads grow.

Conclusion

Vespa delivers low latency processing of data at any

scale by moving computation to data rather than the

other way around. Its dynamic data redistribution, fault

tolerance, and real-time query processing simplify

operations and enable seamless scalability. By integrating

storage and compute functions, Vespa reduces

operational complexity and cuts infrastructure costs.

For businesses, Vespa empowers organizations to deliver

personalized, real-time search results, recommendations,

and data-driven experiences. Updating data in real-time

keeps customer interactions relevant and engaging,

increasing satisfaction and boosting conversion rates. Its

automated data management and built-in query

processing allow businesses to deploy, scale, and update

applications quickly, reducing development time and

accelerating innovation. By consolidating storage and

compute functions, Vespa can deliver low latency results

at any scale, using hardware optimally to minimize costs.

For engineering teams, Vespa simplifies architecture by

unifying search, storage, and data processing into a

single, scalable platform. This streamlined design reduces

system complexity, allowing teams to manage fewer

components while ensuring peak performance. Vespa’s

fault-tolerant design ensures continuous availability by

automatically redistributing data during node failures or

maintenance, making it ideal for high-traffic

environments. Its flexible query and data model also

supports advanced data processing, machine-learned

ranking, and customizable search features so developers

can tailor indexing, queries, and models to fit specific

business needs.

Whether your organization requires real-time search,

personalized recommendations, or advanced data

processing, Vespa’s proven and scalable architecture,

make it a powerful platform for powering data-intensive

real-time applications with efficiency, reliability, and

precision.

Version or date here8

Scaling Smarter: Vespa's Approach to High-Performance Data Management

Interested to learn more? We have many different resources
and information available through our social platforms

Vespa.ai is a platform for building and running real-time AI-driven

applications for search, recommendation, personalization, and RAG.

It enables enterprise-wide AI deployment by efficiently managing

data, inference, and logic, handling large data volumes and over 100K

queries per second. Vespa supports precise hybrid search across

vectors, text, and structured metadata. Available as both a managed

service and open source, it's trusted by organizations like Spotify,

Vinted, Wix, and Yahoo. The platform offers robust APIs, SDKs for

integration, comprehensive monitoring metrics, and customizable

features for optimized performance.

GitHub Twitter LinkedIn YouTube

© Vespa.ai Norway AI. Nov 2024

9

https://github.com/vespa-engine
https://x.com/vespaengine?lang=nb&mx=2
https://www.linkedin.com/company/vespa-ai/posts/?feedView=all
https://www.youtube.com/channel/UCVXw_f6UHff8-V9FA1LMIiw

